
art news
Kyle J. Knoepfel
art stakeholders meeting
11 May 2017

• Recent issues
• Preview of art 2.07
• Questions for the stakeholders
– MemoryTracker database schema change
– Behavior of calling Post* service callbacks
– art::DoNotRecordParents base class

• GCC 7.1
• AOB

Today’s meeting

5/12/17 Kyle J. Knoepfel | art stakeholders meeting2

• A user reported not being able to retrieve an Assns in the same process that
produced it.

• Upon investigation, this is what the code looked like:

Could not retrieve Assns in process that produced it

5/12/17 Kyle J. Knoepfel | art stakeholders meeting3

MyProducer::MyProducer(Parameters const&)
{

produces<Assns<A,B>>();
}

void MyProducer::produce(art::Event& e)
{

auto ab = std::make_unique<Assns<B,A>>();
 // ...

e.put(std::move(ab));
}

• A user reported not being able to retrieve an Assns in the same process that
produced it.

• Upon investigation, this is what the code looked like:

Could not retrieve Assns in process that produced it

5/12/17 Kyle J. Knoepfel | art stakeholders meeting4

MyProducer::MyProducer(Parameters const&)
{

produces<Assns<A,B>>();
}

void MyProducer::produce(art::Event& e)
{

auto ab = std::make_unique<Assns<B,A>>();
 // ...

e.put(std::move(ab));
}

Reversed	
template	arguments

• A user reported not being able to retrieve an Assns in the same process that
produced it.

• Upon investigation, this is what the code looked like:

• art did not catch this bug because of insufficient checking of the types that were
being inserted into the event.

• This has been fixed.

Could not retrieve Assns in process that produced it

5/12/17 Kyle J. Knoepfel | art stakeholders meeting5

MyProducer::MyProducer(Parameters const&)
{

produces<Assns<A,B>>();
}

void MyProducer::produce(art::Event& e)
{

auto ab = std::make_unique<Assns<B,A>>();
 // ...

e.put(std::move(ab));
}

• User asked about using a trigger path from a previous process in SelectEvents.
• Yes, that is intended to be supported. It would like this:

SelectEvents according to filter criteria from previous process

5/12/17 Kyle J. Knoepfel | art stakeholders meeting6

process_name: ANALYZE

physics.epath: [o1]
outputs.o1: {

module_type: RootOutput
fileName: "out.root"
SelectEvents: ["PROD:tpath"]

}

process_name: PROD

physics: {
producers: {

 p1: {...}
 p2: {...}
 }

filters: {
 f1: {...}
 f2: {...}
 }

tpath: [p1,p2,f1,f2]
epath: [o1]

}

outputs.o1: {...}

Output	from	PROD

is	input	to	ANALYZE

• User asked about using a trigger path from a previous process in SelectEvents.
• Yes, that is intended to be supported. It would like this:

SelectEvents according to filter criteria from previous process

5/12/17 Kyle J. Knoepfel | art stakeholders meeting7

process_name: ANALYZE

physics.epath: [o1]
outputs.o1: {

module_type: RootOutput
fileName: "out.root"
SelectEvents: ["PROD:tpath"]

}

process_name: PROD

physics: {
producers: {

 p1: {...}
 p2: {...}
 }

filters: {
 f1: {...}
 f2: {...}
 }

tpath: [p1,p2,f1,f2]
epath: [o1]

}

outputs.o1: {...}

Output	from	PROD

is	input	to	ANALYZE

• Specify process-qualified path
“<process name>:<trigger path>”

• Alas, does not work with art 2.06 (or any earlier
version that you would care about).

• Fixed for art 2.07.

• General features:
– EventID comparator: means of specifying using wildcard patterns which events you

would like to match.
– FHiCL Python extension module, for converting FHiCL documents to Python dictionaries.
– ServiceHandle<SomeService const> constructions allowed
– DatabaseConnection service: provides ability to have thread-safe interactions with

SQLite databases
– Improvements to TimeTracker reporting

• Utilities in preparation for multi-threading:
– cet::SimultaneousFunctionSpawner: class used for testing how a function behaves

when multiple threads call it simultaneously.
– CET_ASSERT_ONLY_ONE_THREAD(): macro that is enabled when NDEBUG is false. It is

used to ensure that only one thread is accessing the given block of code at a time.
std::abort is called if a second thread accesses the block before the first one has
finished. Same semantics as assert(…).

Preview of art 2.07

5/12/17 Kyle J. Knoepfel | art stakeholders meeting8

• Under-the-cover improvements:
– All (relevant) registries and services are thread-safe
– Message-logging via the message facility is thread-safe

• Bug fixes:
– Restore graceful shutdown of art for exception throws and CTRL+C signals.
– More robust checking for Assns<A,B(,D)> vs. Assns<B,A(,D)> insertions
– Restore event-selection using previous-process filter criteria
– etc.

Preview of art 2.07

5/12/17 Kyle J. Knoepfel | art stakeholders meeting9

• Breaking changes:
– Module and service reconfiguration has been removed.

• To our knowledge, no one accept for artdaq was using this facility. artdaq no longer has
need of reconfiguration.

• MyModule::reconfigure(ParameterSet const&) functions are still allowed, but art
does not implicitly call them.

• UserInteraction, SimpleInteraction and PathSelection services have been
removed.

– Functions of art-provided services that are intended to be used only as
callbacks/implementation details are now private. Functions that are intended to be used
via ServiceHandle<SomeService> are still available.

– ServiceRegistry::instance() is now private. Gaining access to a service can now
be done only via ServiceHandle<SomeService (const)>.

– MemoryTracker database schema change.
– floating_point_control per-module configuration removed.

Preview of art 2.07

5/12/17 Kyle J. Knoepfel | art stakeholders meeting10

• In order to provide thread-safe MemoryTracker services, the schema to the
MemoryTracker database needed to be adjusted.

• If a user wants to insert additional entries into an extant database but using the
new schema, the insertion will fail. A migration tool will be necessary.

• Is there a need to create a migration tool for current database files?

MemoryTracker SQLite schema changes

5/12/17 Kyle J. Knoepfel | art stakeholders meeting11

Step Run SubRun Event Vsize RSS
------------------ --- ------ ----- ---------- ----------
PreProcessEvent 1 0 1 478.060544 137.306112
PostProcessEvent 1 0 1 478.060544 137.306112

Run SubRun Event Vsize DeltaVsize RSS DeltaRSS
--- ------ ----- ------------ ---------- ----------- ----------
1 0 1 526.80859375 0 131.9453125 0

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting12

• Whenever an event is processed, the pre{Event,Module} and post{Event,Module}
callbacks are always called, even if one of the modules threw an exception during
the call of its (e.g.) produce function.

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting13

• Whenever an event is processed, the pre{Event,Module} and post{Event,Module}
callbacks are always called, even if one of the modules threw an exception during
the call of its (e.g.) produce function.

• Such symmetry is manifested due to our use of the RAII idiom, which can be used
to provide exception-safe code.

class ServiceSentry {
public:
ServiceSentry() {
preEventCallbacks().invoke();

 }
~ServiceSentry() noexcept(false) {
postEventCallbacks().invoke();

 }
};

void processEvent(Event& e)
{
ServiceSentry sentry;
yourModule.produce(e);

}

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting14

• Whenever an event is processed, the pre{Event,Module} and post{Event,Module}
callbacks are always called, even if one of the modules threw an exception during
the call of its (e.g.) produce function.

• Such symmetry is manifested due to our use of the RAII idiom, which can be used
to provide exception-safe code.

class ServiceSentry {
public:
ServiceSentry() {
preEventCallbacks().invoke();

 }
~ServiceSentry() noexcept(false) {
postEventCallbacks().invoke();

 }
};

void processEvent(Event& e)
{
ServiceSentry sentry;
yourModule.produce(e);

}

processEvent call sequence

1. preEventCallbacks().invoke();

2. yourModule.produce(e);

3. postEventCallbacks().invoke();

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting15

• Whenever an event is processed, the pre{Event,Module} and post{Event,Module}
callbacks are always called, even if one of the modules threw an exception during
the call of its (e.g.) produce function.

• Such symmetry is manifested due to our use of the RAII idiom, which can be used
to provide exception-safe code.

class ServiceSentry {
public:
ServiceSentry() {
preEventCallbacks().invoke();

 }
~ServiceSentry() noexcept(false) {
postEventCallbacks().invoke();

 }
};

void processEvent(Event& e)
{
ServiceSentry sentry;
yourModule.produce(e);

}

processEvent call sequence

1. preEventCallbacks().invoke();

2. yourModule.produce(e);

3. postEventCallbacks().invoke();

If	produce throws
and then	one	of	the
post	event	callbacks	
throws	è
std::terminate

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting16

• Various solutions to this problem.
• In multi-threaded art, we will probably need to adopt a couple of them.
• Our suggestion for this scenario is to remove the sentry all together and make

explicit calls to the pre/post callbacks:

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting17

• Various solutions to this problem.
• In multi-threaded art, we will probably need to adopt a couple of them.
• Our suggestion for this scenario is to remove the sentry all together and make

explicit calls to the pre/post callbacks:

void processEvent(Event& e)
{
preEventCallbacks().invoke();
yourModule.produce(e);
postEventCallbacks().invoke();

}

class ServiceSentry {
public:
ServiceSentry() {
preEventCallbacks().invoke();

 }
~ServiceSentry() noexcept(false) {
postEventCallbacks().invoke();

 }
};

void processEvent(Event& e)
{
ServiceSentry sentry;
yourModule.produce(e);

}

Potential change in behavior of services during an exception

5/12/17 Kyle J. Knoepfel | art stakeholders meeting18

• Semantics of Post* callbacks changes: (e.g.) post-event callbacks are invoked
whenever the process-event function calls do not result in an exception throw.

• A consequence:
– For example, the TimeTracker will not record the execution time for a module whose

produce threw an exception.

• Is this change in behavior acceptable to the experiments?

• art tracks the products that were retrieved (parents) during a produce/filter
call.

• For any product that is placed onto the event, the parents are associated with it in
the metadata.

• It is possible to tell art to NOT track the parents by making your product inherit from
the art::DoNotRecordParents base class.

• Based on our trolling of experiment/project repositories, no one is using this facility.
• Removing the facility would simplify our code.
• No immediate need to remove it, but something for the experiments to consider.

art::DoNotRecordParents base class

5/12/17 Kyle J. Knoepfel | art stakeholders meeting19

• Released 5/2/2017
• C++17 Draft International Standard

released for ISO ballot in March.
– No major changes expected before final

approval this summer
• GCC 7.1 is C++17 (core language)

feature complete
• At some point in the near future, we will

want to move toward GCC 7.1, and also
want to start compiling the c++1z flag.

• We may also want to start using the
Concepts Lite features (e.g. constrained
templates) that are slated to become
part of C++20.

GCC 7.1

5/12/17 Kyle J. Knoepfel | art stakeholders meeting20

